
PRESULT user guide

Written by

Shankaracharya

And

Chad Huff

Huff Lab
Department of Epidemiology

The University of Texas MD Anderson Cancer Center
Houston, Texas

	 2	

Table of Contents
1.	Introduction	..	3	
2.	Getting	ready	to	run	PRESULT	..	4	
2.1	System	requirements	...	4	
2.2	Installation	..	4	

	 2.2.1	Windows..………………………………………………………………………………………..4	
	 2.2.2	Mac………...……………………………………………………………………………………….5	
	 2.2.3	Linux…….…………………………………………………………………………………………5	
2.3	Need	help?	..	6	

3.	Five	Modules	of	PRESULT	...	7	
3.1	Train	module	..	7	
3.2	Test	module	...	9	
3.3	Training	and	testing	module	...	11	
3.4	K-fold	cross	validation	module	...	12	
3.5	Absolute	risk	prediction	module	...	13	
							3.5.1	Training	..	13	
							3.5.2	Yearly	absolute	risk	prediction	..	15	

4.	ML	methods	parameter	optimization	..	16	
4.1	Mixture	of	Experts	(ME)		...	16	
4.2	Random	Forest	(RF)		...		17	
4.3	Regression	Tree	(RT)	...	18	
4.4	Support	Vector	Machine	(SVM)	...	19	

5.	Frequently	Asked	Questions	...	20	

	 3	

1. Introduction

The prediction by Supervised Learning Toolkit (PRESULT) is designed to simplify the
development, validation and optimization of machine learning (ML) risk prediction
models. PRESULT also applies ML models to predict the absolute risk of developing
disease over one or more years. PRESULT supports four advanced ML methods:
Random Forest (RF), Mixture of Experts (ME), Support Vector Machine (SVM) and
Regression Tree (RT).

PRESULT is designed to mitigate many of the major challenges of risk prediction
modeling with ML methods. The tool produces the portable model that can be used
anytime to validate the new model, provides program objects in the form of executable
for easy distribution, allows parameter tuning through simple, well defined command
line arguments, and clearly documents tuning parameters to ensure reproducibility and
provide support for external validation. PRESULT also generates receiver operating
characteristics (ROC) curves and calculate the area under the curve (AUC) for training
and validation datasets. The difference between ROC curves for training and testing
datasets as well as k-fold cross validation helps detect model overtraining. The
optimization of ML parameters values is one way to minimize overtraining.

Software utilities: PRESULT is designed to classify data into binary classes (for
example diseased/non-diseased) to predict the present status of any new test dataset to
one of the two classes based on the training network. It accepts raw data for every field
with “missing values” marked as “?” for all covariates in one file.

The performance of PRESULT will often depend on the choice of tuning parameter
values. The default parameter values function well in our internal tests, but we
recommend parameter optimization whenever possible.

	
	
	

	 4	

2. Getting ready to run PRESULT
2.1 System requirements

PRESULT runs on any Linux or Mac OS system with X-windows (XQuartz for mac),
ghostscript and xpdf-tools installed. The ghostscript program is necessary for producing
high quality pdf files and installer is available at, http://pages.uoregon.edu/koch/. The
xpdf-tools are available at http://www.foolabs.com/xpdf/download.html. X-windows
must be installed on Linux to display the ROC curve, but high quality pdf versions of
the ROC curve will be saved after successful execution of the program even if X-
windows is not installed.

2.2 Installation

2.2.1 Windows (7 and above):

1. MCR (matlab compiler runtime environment) Installation -
Click on windows installer for MCR supplied in the folder “Windows_MCR”
and follow the instructions on the screen.

2. Install strawberry perl (A free version of windows perl) by following the

instructions here https://learn.perl.org/installing/windows.html. Setup the
path of perl library by navigating through environmental variable setting
option on your windows PC. Restart the system and verify perl installation
with command “perl -v”. This command should show the installed version of
perl and confirm the installation.

3. Install ghostscript program by following the steps documented in “Installing-
Ghostscript-on-Windows-7.pdf”, “Installing-Ghostscript-on-Windows-
8.1.pdf” and “Installing-Ghostscript-on-Windows-10.pdf” distributed with
the binaries in the folder “ghostscript_install_instructions”.

4. Important: restart the computer.

5. Download xpdf for windows version and install it by following the steps

mentioned in the “INSTALL” file inside the xpdf folder.

6. Important: restart the computer.

7. Open the “Command Prompt”, navigate through the
“PRESULT_WINDOWS” folder on the command line (using command cd)
and run the program (for eg. PRESULT.exe train_test1 RF --input_data
pid_raw_data.txt)

	 5	

2.2.1 Macs:

1. MCR (matlab compiler runtime environment) Installation -
Click on mac installer for MCR supplied and follow the instructions on the
screen.

2. Setting up environment

Add the following two lines to the ~/.bash_profile file in your home
directory, then restart the terminal (Note: incase matlab compiler is installed
at some other location, change the path):

export
DYLD_LIBRARY_PATH=/Applications/MATLAB/MATLAB_Runtime/v91/ru
ntime/maci64:/Applications/MATLAB/MATLAB_Runtime/v91/bin/maci64:/Applic
ations/MATLAB/MATLAB_Runtime/v91/sys/os/maci64

export
XAPPLRESDIR=/Applications/MATLAB/MATLAB_Runtime/v91/X11/app-
default

2.2.2 Linux:

1. Find the MCR for linux in the folder “MCR_linx_installer” or download the
MCR from the following link:
https://www.mathworks.com/supportfiles/downloads/R2014b/deployment_file
s/R2014b/installers/glnxa64/MCR_R2014b_glnxa64_installer.zip

2. Install the MCR –

Install as superuser-

< sudo ./install -mode automated -argreeToLicense yes> in the
MCR_installer directory and follow the instructions on the screen.

Install locally-

Step 1- create installation directory
(example: /path/directory/MATLAB/MATLAB_Compiler_Runtime).

Step 2- run the command
 <./install -mode automated -argreeToLicense yes >

3. Setting up environment
Run the command < sh run_PRESULT.sh <mcr_directory> [argument_list] >

	 6	

Example: sh run_PRESULT.sh /path/to/mcr directory/v84 train_test1 RF --
input_data pid_raw_data.txt --out test

<mcr_directory> = the complete path where your matlab compiler runtime is
installed
Example: /path to mcr/MATLAB_Compiler_Runtime/v84

[argument_list] = list of arguments to launch the program
Example: train_test1 RF --input_data pid_raw_data.txt --out test

Copy and paste the below mentioned LD_LIBRARY_PATH in your
.bash_profile and restart the terminal

export
LD_LIBRARY_PATH=<mcr_directory>/runtime/glnxa64:/<mcr_directory>/
bin/glnxa64:<mcr_directory>/sys/os/glnxa64:<mcr_directory>/sys/java/jre/gl
nxa64/jre/lib/amd64/native_threads:<mcr_directory>/sys/java/jre/glnxa64/jre/
lib/amd64/server:<mcr_directory>/sys/java/jre/glnxa64/jre/lib/amd64/client:<
mcr_directory>/sys/java/jre/glnxa64/jre/lib/amd64/

export XAPPLRESDIR=<mcr_directory>/X11/app-defaults

2.3 Need help?
If your question is not answered in this user’s guide, feel free to send your questions and
comments at, FShankaracharya@mdanderson.org

	 7	

3. Five Modules of PRESULT
3.1 Train module
	
Description: This module train the network for the training input data and saves the
portable model for four different ML methods along with standard logistic regression
model.
	
Command:
PRESULT train (RF|ME|RT|SVM) --train_data <input_dataset> [PARAMETERS]

Input:

1. One training dataset (a compulsory input parameter)
2. Optional parameters: “--out” for output prefixes, “randm” for choice of

randomization of samples in the input data with the choice of ‘yes’ or ‘no’, the
desired p value input to select variables in train data for logistic regression
“p_val” whose default value is set to 0.01 and “--title” write user’s title on ROC
curve.

3. Other method related parameter options for different method (More details in 4).

Output:

The train module create the following files:
• The trained model file named as [method name]_trained_net.mat (Example:

ME_trained_net.mat).
• ROC curve in two file formats, pdf and eps.
• The training score of the trained model.
• Logistic regression model and the p-value for each variable.
• Normalized training data matrix

Trained model description:

The	training	model	is	saved	as	trained	network	for	each	ML	method	(for	
example	ME	trained	model	as	ME_trained_net.mat	and	RF	trained	model	as	
RF_trained_net.mat	etc.).	Training	model	with	each	method	contain	their	own	
parameter	values	and	architecture.	Here	is	the	example	architecture	of	mixture	
of	experts	model.	A	typical	ME_trained_net.mat	file	incorporates	the	original	
parameter	values	used	to	train	the	model	which	include:		

• Type	of	network	=	mixture	of	expert	multi	layer	perceptron,		
• Numbers	of	input	(nin)	=	7	
• Numbers	of	hidden	layers	in	expert	network	(ehidden)=8,		
• Number	of	output	(nout)	=	1,		
• Numbers	of	hidden	layers	in	gate	network	(ghidden)=20,		
• Numbers	of	expert	(nexp)=2,		
• Network	weight	(nwts)=348,		
• Activation	function	used	(actfn)=logistic,		
• Expert	architecture	(exp)=[1x2	struct],)		

	 8	

• Gate	architecture	(gate)=(1x1	struct)	and		
• tag	(distribution=standard).		

	

	
	
	
	
	
	
	
	

type:	'mixmlp'	
								nin:	7	
				ehidden:	8	
							nout:	1	
				ghidden:	20	
							nexp:	2	
							nwts:	348	
						actfn:	'logistic'	
								exp:	[1x2	struct]	
							gate:	[1x1	struct]	
								tag:	'standard'	

	 9	

3.2 Test module

Description: This module tests a trained network file from the training module on a
testing dataset. The number and order of columns in the training dataset should match
the testing dataset.

Command:
PRESULT test (RF|ME|RT|SVM) --test_data <input_dataset> --trained_net
<input_network_file> [PARAMETERS]

Input:

1. One testing dataset (a compulsory input parameter)
2. One trained network file (a compulsory input parameter)
3. Optional parameter: The test module will validate the test dataset with selected

ML method in a default setting. Logistic regression can also be incorporated for
comparison with ML method with the inclusion of following parameters: “--
log_train_model” for logistic regression model, “--log_p_value” for p-value of
logistic regression for each variable in the trained data and “--
logistic_regression” as “on” (don’t include the inverted commas in the command
line). The first two parameters are the standard output from the training module.
“p_val” is the cutoff parameter used to select the variables for logistic regression
(default value is set to 0.01). The “--out” parameter is for output file name
prefixes and the “--title” gives freedom to the users to choose their own title to
be printed on ROC curve.

4. Other method related parameter options, which vary according to the ML method
used (More details can be found in the ML methods parameter optimization
section on page 16).

Output:

The train module creates the following files:
1. The trained model file named as [method name]_trained_net.mat (Example:

ME_trained_net.mat).
2. ROC curve in two file formats, pdf and eps.
3. The training score of the trained model.
4. Logistic regression model file and text file with the p-value for each variable.
5. Normalized test data matrix
6. Other standard output on the command line:

! Confusion matrix in the form of

True	Positive	(TP)	 False	Positive(FP)		

False	Negative	(FN)	 True	Negative	(TN)	

	 10	

! Sensitivity =	 !"#$%&' !" !"#$!"#$%!"# !"#$"#%
!"#$%&' !" !"#$!%%& !"#$%$&' !"#$#

				=	 !"
(!"!!")

! Specificity	=	 !"#$%&' !" !"#$!"#$%&'" !"#$"#%

!"#$%&' !" !"#$!%%& !"#$%&'" !"#$#
			=	 !"

(!"!!")
	

	
	
! Accuracy	=	!"#$%&' !" !"##$!% !"#$%$&'%

!"#$% !"#$%&' !" !"#$#
		=	 (!"! !")

(!"!!"!!"!!")
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 11	

3.3 Training	and	testing	module

Description: This module conducts training and testing in a single command line. When
invoked with the “train_test1” option, PRESULT will divide a single input dataset into
separate training and testing datasets. By default, 80% of individuals will be assigned to
the training dataset and 20% of individuals will be assigned to the testing dataset; these
percentages can be modified with the test_pc parameter. In addition to the output
produced from the training and testing modules, option “train_test1” also produces two
additional output files: the divided training and testing datasets, named [ML
METHOD]_train_data.txt and [ML METHOD]_test_data.txt. When invoked with the
“train_test2” option, the training and testing datasets are provided as separate input files.

Command:
PRESULT train_test1 (RF|ME|RT|SVM) --input_data <input_dataset> [--test_pc <x>]
[PARAMETERS]

PRESULT train_test2 (RF|ME|RT|SVM) --train_data <input_training_dataset> --
test_data <input_testing_dataset> [PARAMETERS]

Input:

1. Single input data (a compulsory input parameter)
2. Optional parameter: “--test_pc” as any integer, “--logistic_regression” as “on” or

“off”, The desired p value input to select variables in train data for logistic
regression “p_val” whose default value is set to 0.01. The “--out” parameter is
for output file name prefixes and the “--title” gives freedom to the users to
choose their own title to be printed on ROC curve.

3. Other method related parameter options, which vary according to the ML method
used (More details can be found in the ML methods parameter optimization
section on page 16).

Output:

The training and testing module create the following files:
1. The trained model file named as [method name]_trained_net.mat (Example:

ME_trained_net.mat).
2. ROC curve in two file formats, pdf and eps.
3. The training score of the trained model.
4. The logistic regression model file and text file with the p-value file for each

variable.
5. Normalized training and testing data matrix files.
6. The standard command line output will also report the confusion matrix,

specificity, sensitivity, accuracy, AUC’s of the ML model as well as the logistic
model (if logistic_regression was specified), name of the ML model file, name of
the logistic regression model file, and name of the logistic regression p-value file.

	 12	

3.4 K-fold cross validation module

Description: This	module	conducts	k-fold	cross-validation	on	an	input	dataset.		The	
dataset	is	first	subdivided	into	k	files,	which	are	written	as	[method	
name]_kfold_train_data_kfold_1	to	10	and	[method	name]_kfold_test_data_kfold_1	
to	10	(example	ME_kfold_train_data_kfold_1	and	ME_kfold_test_data_kfold_1).	Then	
for	each	partition,	PRESULT	conducts	training	on	the	other	k-1	partitions	and	
applies	the	trained	model	to	the	remaining	partition.		The	output	includes	the	
accuracy	and	AUC	for	each	partition	as	well	as	a	plot	with	the	average	ROC	curve	
and	ROC	curves	for	all	partition.

Command:
PRESULT kfold (RF|ME|RT|SVM|Logistic) --input_data <input_file> --kfold <k> --
title <ROC curve title> [PARAMETERS]

Input:

1. Single input data (s compulsory input parameter)
2. Optional parameters: The parameter “--randm” as “no” will divide the data

evenly into k partitions without shuffling the data, otherwise the data are
randomly sorted prior to partitioning. The “--out” parameter is for output file
name prefixes and the “--title” gives freedom to the users to choose their own
title to be printed on ROC curve.

Output:

1. The trained model file named as [method name]_trained_net_kfold_[k].mat
(Example: ME_trained_net_kfold_1.mat). For 10-fold cross validation, ten
models are created.

2. Ten sets of training and testing data are generated with the name ending with
kfold_1 to kfold_k. The typical dataset named as [method
name]_test_data_kfold_[k] (example ME_test_data_kfold_1).

3. ROC curve in two file formats, pdf and eps.
4. Normalized training and testing data matrix files
5. The standard command line output reports specificity, sensitivity, accuracy, and

AUC for each partition.
6. Summary of k-fold cross validation is presented as the standard output along

with average sensitivity, specificity, accuracy and AUC of the test model.
Example:

	 13	

 ############ Summary for 10-fold cross validation ###############
 Kfold Sensitivity Specificity Accuracy AUC_test
 _____ ________ _______ ________ ________

 1 0.82353 0.64 76.316 0.84706
 2 0.77358 0.73913 76.316 0.84153
 3 0.72917 0.71429 72.368 0.78224
 4 0.91837 0.7037 84.211 0.89171
 5 0.66038 0.78261 69.737 0.80764
 6 0.85185 0.63636 78.947 0.88047
 7 0.79365 0.61538 76.316 0.80346
 8 0.91489 0.68966 82.895 0.8726
 9 0.84 0.65385 77.632 0.85098
 10 0.81818 0.71429 78.947 0.88863

	
	
	
	
	

	 14	

3.5 Absolute	risk	prediction	module	

Description: This module calculates absolute disease risk in 5, 10 or x-years in two
steps: 1) training with “train_abs_risk” and 2) absolute yearly risk prediction with
“yearly_risk_prediction”.

3.5.1 Training:

Description: To train the data input training dataset must contain sample id in the first
column with other variables to match with another input file, id_age. The id_age file
also must have sample id, their corresponding age and labels (outcome) in the first,
second and third consecutive columns.

Command:
PRESULT train_abs_risk (RF|ME|RT|SVM)-train_data <input_file> --randm no --
id_age LC_id_age_label.txt [PARAMETERS]

Input:

1. The Training dataset with sample id (only in numeric form) as tag (--train_data).
2. The sample id, age and label dataset (as described above) as tag (--id_age)
3. Optional parameters: The parameter “--randm” as “no” help reproduce the result

by preventing shuffling of data. The “--out” parameter is for output file name
prefixes and the “--title” gives freedom to the users to choose their own title to
be printed on ROC curve.

Output:

1. Trained network model file for the selected ML method.
2. The β1 value from logistic regression.
3. Attributable risk (AR) values.
4. Training score file.
5. Logistic regression model file.
6. Baseline risk file with the median values of variables from the training dataset.

	
	
	
	
	

	 15	

3.5.2 Absolute yearly risk prediction:

Description: The second step in the absolute risk prediction workflow uses the training
output as input. This module accept user’s entered baseline risk file as input. Incidence
and mortality rate table should be provided which contain age specific incidence rate
and mortality rate excluding the disease in the study. In the table first, second and third
column must be arranged as age, incidence rate and mortality rate respectively either
block-wise or yearly format. It also requires prediction data (first column must contain
sample id), which contains variables for the samples whose risk needs to predict. The
sample id in different datasets must be numeric. The output of the “yearly_risk” sub-
module includes relative-risk with corresponding ID of the sample as “id_and_ri.txt”,
absolute year-wise 10 years risk of developing the disease as “yearwise_absolute_risk”.

Command:
PRESULT yearly_risk (RF|ME|RT|SVM) --trained_net <risk_trained_net.mat> --
baseline_risk <baseline_risk.txt> --AR <float> --predictive_data <prediction_data.txt> -
-id_age_data <id_age_data.txt> --beta_one <float> --incidance_rate
<inc_rate_blocks.txt> [PARAMETERS]

Input:

1. Trained network model file.
2. Sample id, age and label data (same file as in first step).
3. Baseline risk file containing baseline risk for each variable as a text file.
4. Attributable risk and β1 values.
5. Prediction dataset contain the sample data whose yearly risk are to be predicted.

The file format expects the sample id in the first column and other variables in
the successive columns. Column order in this file must match the training
dataset.

6. The incidence and mortality rate table (as described above).
7. The “--out” tag for the output file name prefixes.

Output:

1. The relative risk file containing relative risk for every individual in prediction
dataset with his or her id.

2. The ten years (or any number of years) risk for individuals in the prediction
dataset.

	 16	

4. ML methods parameter optimization

4.1 Mixture of Experts

Introduction:
Mixture of Experts (ME) is made up of different number of experts and one gate
network. The ME algorithm first divides the whole learning task into multiple subtasks
to process them separately by simple expert network and then combines output from
each of them to produce the final output. The overall performance of the final output is
better than the individual network output. The ME uses Multilayer perceptron (MLP) as
a unit for training in the expert and gate network. The MLP uses back propagation (BP)
algorithm for learning weight in order to maximize the log likelihood of training.
The gating network accepts vector input, operates on a generalized linear function and
produces scalar output which indicates the probability of which input 𝑥 is attributed to
expert 𝑗. The output from each expert network for an input vector 𝑥 is based on the
generalized linear equation 𝑂! 𝑥 = 𝑓 (𝑤!𝑥), where, 𝑤! is a weight matrix. The final
output of ME is the sum of multiplications of the outputs from gating and expert
networks.

The gating networks input vector and the conditional densities of target vector 𝑡 for
expert 𝑗 are used to calculate the probabilistic interpretation of ME. The Expectation and
Maximization (EM) optimization process updates the weights with conjugate gradient
descent method. Overall, ME architecture posses the mechanism of soft competitions
between expert networks (for learning on the basis of supervised error) and gate network
(compete for the right to select an appropriate expert network). The implementation of
ME in PRESULT is based on matlab libraries mixlab (Moerland, 1997) and netlab.

Parameter optimization:
We use following optimization parameter for ME model:

1. Numbers of iterations in EM algorithm (--emiters, default is 10).
2. Numbers of experts (can be any integer, default is 2).
3. Numbers of hidden layers in each experts (--hexp, default is 8).
4. Numbers of hidden layers in gate network (--hgate, default is 20).
5. Numbers of iterations in maximization step of EM algorithm (--mstep_iterations,

default is 7).
6. Activation function (--actfunc, ‘logistic’ or ‘linear’, default is logistic).
7. Randomized shuffling before the selection of train dataset to train the ME model

(--randm, default is yes).

	
	
	

	 17	

4.2 Random Forest

Introduction:
Random Forest (RF) method first creates ensembles (forests) of many regression trees
then uses an average of all ensemble predictions to predict the disease risk. Each
regression tree is grown on an independent bootstrap sample from the training data. At
each node the method select random numbers of randomly selected training input
variables then find the best split on the selected random variables. Afterwards the
method grows trees to maximum depth and makes the predictions. Mathematically,
{𝑟! 𝑥,𝜃!,𝐷! ,𝑚 ≥1} indicates tree, where 𝜃!, 𝜃! 𝑡𝑜 𝜃! are identical independent
outputs of a randomizing variable 𝜃. These trees combine to form an ensemble of
aggregated regression estimate of 𝑟! 𝑋,𝒟! = 𝔼![𝑟!(𝑋,𝜃,𝒟!)],where 𝔼! denotes
expectation conditional on X and the data set 𝒟!. This process is achieved by using the
forked code of RF method from Stochastic Bosque code
(https://www.mathworks.com/matlabcentral/fileexchange/31036-random-forest)
provided by Eren Golge (https://github.com/erogol/Random_Forests).

Parameter optimization:
We use following optimization parameter for RF method:

1. Minimum numbers of samples in an impure node for it to be considered for
splitting with tag --min_parents (default is 100).

2. Minimum numbers of samples in a leaf with tag --min_leaf (default is 70).
3. Minimum numbers of trees for training with tag --n_trees (default is 300).

	 18	

4.3 Regression Tree
	
Introduction:
Regression	 tree	 (RT)	 is	 an	 intuitive	method	 in	which	 tree	 grows	 in	 upside	down	
direction	having	the	root	on	the	top.	The	information	passes	down	the	tree	through	
a	series	of	splits,	or	nodes	at	which	the	decision	of	tree	growth	is	determined	on	the	
basis	 of	 value	 of	 one	 or	more	 explanatory	 variables.	 The	 terminal	 leaf	 gives	 the	
predicted	 response.	 Splitting	 of	 node	 in	 RT	 is	 analogous	 to	 variable	 selection	 in	
regression.	 Trees	 are	 typically	 fit	 via	 binary	 (parents	 nodes	will	 always	 spit	 into	
two	nodes),	 recursive	 (each	child	node	will	become	the	parent	nodes,	unless	 it	 is	
terminal	node),	or	partitioning	method.		
	
Parameter optimization:
We use following optimization parameter for RT method:

1. Minimum	numbers	of	parents	with	tag	–min_parents	(default	is	50).	
2. Minimum	numbers	of	leaves	with	tag	–min_leaf	(default	is	12).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 19	

4.4 Support Vector Machine
	
Introduction:
Support Vector Machine (SVM) divides the data into two binary classes with the largest
margins by drawing the best hyper plane between them. We used SVM libraries fitcsvm
of matlab to train the model. Fitcsvm library calculates the score as a function of input
data 𝑓 𝑥 = ∝! 𝑦!𝐺 𝑥! , 𝑥 + 𝑏!

!!! where, (∝! ,… . . ,∝!, 𝑏) are the estimated SVM
parameters, 𝐺(𝑥! , 𝑥) is the dot product in the predictor space between x and the support
vectors, and the sum includes the training set observations. We used matlab function
fitSVMPosterior to convert the score into posterior probability by passing the model
with predictor data and class labels. The resulting training model contains the
parameters and their values used originally to train the model. We use the matlab
function ‘predict’ to predict the probability values for the class from validation data.

Parameter optimization:

1. Limiting numbers of iterations with tag --iterations_limit (default is 300).
2. Kernel function with tag --kernel_function (can be “rbf” or “linear”, default is

“linear”).	

.

	 20	

5. Frequently Asked Questions

Q: Where can I get PRESULT?
A: PRESULT is available at www.hufflab.org/PRESULT.

Q: How can I cite PRESULT?
A: Please cite the following paper:

Q: How can I report a bug in PRESULT?
A: Please feel free to send your questions, comments and suggestions at
FShankaracharya@mdanderson.org

Q: what if I am getting this error message
“./PRESULT: error while loading shared libraries: libmwlaunchermain.so: cannot open shared
object file: No such file or directory”?
A: Check your matlab compiler runtime, either they are not installed or library path has
not been set.

Additionally, if your program is not working even after library path setup and you got
this error message, do the steps:

Run the below mentioned LD_LIBRARY_PATH on the terminal (please replace the
“<mcr_directory>” with actual path of mcr installed directory)

export
LD_LIBRARY_PATH=<mcr_directory>/runtime/glnxa64:/<mcr_directory>/bin/glnxa6
4:<mcr_directory>/sys/os/glnxa64:<mcr_directory>/sys/java/jre/glnxa64/jre/lib/amd64/
native_threads:<mcr_directory>/sys/java/jre/glnxa64/jre/lib/amd64/server:<mcr_directo
ry>/sys/java/jre/glnxa64/jre/lib/amd64/client:<mcr_directory>/sys/java/jre/glnxa64/jre/li
b/amd64/

export XAPPLRESDIR=<mcr_directory>/X11/app-defaults

Q. What if I am getting the Error Message:
 Reason: no suitable image found. Did find:
 /System/Library/Frameworks/JavaVM.framework/JavaVM/libmwlaunchermain.
dylib: stat() failed with errno=20
Trace/BPT trap: 5

A. Please try to set the environment correctly by pasting the following commands:
export
DYLD_LIBRARY_PATH=/Applications/MATLAB/MATLAB_Runtime/v91/runtim
e/maci64:/Applications/MATLAB/MATLAB_Runtime/v91/bin/maci64:/Applications/
MATLAB/MATLAB_Runtime/v91/sys/os/maci64:/System/Library/Frameworks/Jav
aVM.framework/JavaVM:/System/Library/Frameworks/JavaVM.framework/Lib

	 21	

raries

export XAPPLRESDIR=/Applications/MATLAB/MATLAB_Runtime/v91/X11/app-
default

